
BSMP - Broadcast Satellite
Multimedia Protocol

Andreas ROTTMANN

arott@cosy.sbg.ac.at

Praxis-Project absolved at
University of Salzburg, Austria

Department of Computer Science

Supervision: Hilmar Linder, hlinder@cosy.sbg.ac.at

Produced with LATEX chaksem style & PSTricks 1



OVERVIEW

➀ Multicast Introduction

➁ Reliable Multicast

➂ BSMP Overview

➃ Design & Implementation

➄ Tools

OVERVIEW 2



MULTICAST INTRODUCTION

Why multicast:

➜ When sending same data to multiple receivers

➜ Save bandwidth over multiple unicast connections

➜ Receivers’ addresses unknown

Multicast Applications:

➜ Audio/Video conferencing and “broadcasts”

➜ News distribution

➜ Software updates (e.g. clusters, workstation sets)

➜ Resource discovery/advertisement

➜ . . .

MULTICAST INTRODUCTION 3



IP Multicast:

➜ RFC 1112 (Host Extensions for IP Multicast)

➜ Multicast groups, having IPv4 class D or IPv6 multicast addresses

➜ Members of groups may be located anywhere on the Internet

➜ Members join and leave groups and tell the routers via IGMP (RFC

3376)

➜ Senders do not need to be member of the multicast group

➜ Routers use multicast routing protocols to manage groups

➜ IP-Multicast is best-effort (unreliable)

MULTICAST INTRODUCTION 4



RELIABLE MULTICAST

Problems:

➜ ACK-based schemes (like used in TCP) don’t scale

➜ Request explosion

➜ Reply explosion

Solutions:

➜ NAK-based scheme (receiver estimates a timeout and sends a NAK
after that)

➜ NAK-filtering

➜ FEC encoding

RELIABLE MULTICAST 5



BSMP OVERVIEW

What it is:

➜ Multicast Protocol, built upon UDP/IP Multicast

➜ Designed for the requirements of satellite transmissions

• Long RTT

• Asymmetric communication (receiver feedback via wired Internet)

➜ Offers different levels of reliability

➜ Implemented as a shared library offering an C API similar to POSIX
sockets

➜ Successor of RRMP (Restricted Reliable Multicast Protocol), written

by Hilmar Linder and Klaus Siegesleitner

➜ Complete re-write and re-design

• Essentially the same features

• Less than half of the core code size

BSMP OVERVIEW 6



Protocol Key Points:

➜ Built on UDP

➜ Preserves message boundaries

➜ Groups messages into transmission groups (TGs)

➜ TGs have a sequence number

➜ NAK-based retransmission scheme

➜ Retransmissions are FECs over a TG

➜ Per-receiver RTT estimation

BSMP OVERVIEW 7



Features:

➜ Four modes (service classes)

• Full reliability

• Proactive

• Limited reliability

• Unreliable

➜ Designed for asymmetric communication

➜ Data-rate control

➜ Interleaving (protection against burst losses)

➜ Two NAK suppression algorithms (default, LE-SBCC)

➜ Portable (POSIX, Windows using WSA)

BSMP OVERVIEW 8



BSMP Socket API (simplified):

➜ bsmp_socket(family, style)

➜ bsmp_join(sock, if_addr, mc_addr)

➜ bsmp_leave(sock, if_addr)

➜ bsmp_connect(sock, if_addr, mc_addr)

➜ bsmp_send(sock, data),

➜ bsmp_recv(sock, data)

➜ bsmp_close(sock)

BSMP OVERVIEW 9



DESIGN & IMPLEMENTATION

Overview:

TG
Assembler

FEC
Encoder

Interleaver

Retrans.
Table

TG

Table

Send Queue Receive Queue

BSMP Socket API

User Data User Data

PDUs

PDUs
PDUs

Timeout

NAK

NAK

FEC req.

PDUs PDUs

PDUs

TGs

TGs

TGs

Receiver ThreadSender Thread

Scheduler Estimators

Network − UDP Multicast

Network − UDP Unicast

POSIX Socket API

NAK
Filter

DESIGN & IMPLEMENTATION 10



Code Structure:

➜ Data structures (object-oriented C)

• Timer queue

• Data rate estimator

• Socket address routines

• PDU

• Transmission group

• Send queue, receive queue

• Transmission group table

• Virtual socket layer

➜ Sender logic

➜ Receiver logic

DESIGN & IMPLEMENTATION 11



Timer queue:

➜ Core component, used for all timeouts

➜ Sender thread and receiver thread run in a loop, with an iteration at
least about every 10 msecs

➜ There may be many outstanding timeouts (each TG has a timeout)

➜ Once each iteration, there is a timer queue “clock-tick”

➜ Clock-ticks do not need to be uniformly spaced

➜ All timers that have already expired at the clock-tick are invoked and

removed from the queue

➜ Efficient implementation: timer start and remove are both O(log n)

(balanced binary tree)

DESIGN & IMPLEMENTATION 12



Virtual Socket Layer:

➜ Abstracts the operations needed on an underlying socket (normally

POSIX or WSA)

➜ Used to implement sockets that communicate via thread-safe queues
(in-process)

➜ Primarily for testing

Software and APIs used:

➜ GLib 2.0

➜ POSIX threads

➜ POSIX socket API (WSA on Windows)

➜ ISO C, written for POSIX APIs

DESIGN & IMPLEMENTATION 13

http://www.gtk.org


TOOLS

Sample sender and receiver:

➜ Simple, general-purpose BSMP sender/receiver

➜ Allows access to all protocol options

Test Torture:

➜ Test program

➜ Uses virtual socket layer

➜ Generates randomly-sized packets with random content

➜ Checks if they are correctly received

➜ Can be configured via an XML config file:

• Link properties (delay, loss rate)

• Protocol options (mode, data rate, . . . )

TOOLS 14



THE END

Thanks for Your Attention!

THE END 15


