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MULTICAST INTRODUCTION

Why multicast:

➜ When sending same data to multiple receivers

➜ Save bandwidth over multiple unicast connections

➜ Receivers’ addresses unknown

Multicast Applications:

➜ Audio/Video conferencing and “broadcasts”

➜ News distribution

➜ Software updates (e.g. clusters, workstation sets)

➜ Resource discovery/advertisement

➜ . . .
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IP Multicast:

➜ RFC 1112 (Host Extensions for IP Multicast)

➜ Multicast groups, having IPv4 class D or IPv6 multicast addresses

➜ Members of groups may be located anywhere on the Internet

➜ Members join and leave groups and tell the routers via IGMP (RFC

3376)

➜ Senders do not need to be member of the multicast group

➜ Routers use multicast routing protocols to manage groups

➜ IP-Multicast is best-effort (unreliable)
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RELIABLE MULTICAST

Problems:

➜ ACK-based schemes (like used in TCP) don’t scale

➜ Request explosion

➜ Reply explosion

Solutions:

➜ NAK-based scheme (receiver estimates a timeout and sends a NAK
after that)

➜ NAK-filtering

➜ FEC encoding
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BSMP OVERVIEW

What it is:

➜ Multicast Protocol, built upon UDP/IP Multicast

➜ Designed for the requirements of satellite transmissions

• Long RTT

• Asymmetric communication (receiver feedback via wired Internet)

➜ Offers different levels of reliability

➜ Implemented as a shared library offering an C API similar to POSIX
sockets

➜ Successor of RRMP (Restricted Reliable Multicast Protocol), written

by Hilmar Linder and Klaus Siegesleitner

➜ Complete re-write and re-design

• Essentially the same features

• Less than half of the core code size
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Protocol Key Points:

➜ Built on UDP

➜ Preserves message boundaries

➜ Groups messages into transmission groups (TGs)

➜ TGs have a sequence number

➜ NAK-based retransmission scheme

➜ Retransmissions are FECs over a TG

➜ Per-receiver RTT estimation
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Features:

➜ Four modes (service classes)

• Full reliability

• Proactive

• Limited reliability

• Unreliable

➜ Designed for asymmetric communication

➜ Data-rate control

➜ Interleaving (protection against burst losses)

➜ Two NAK suppression algorithms (default, LE-SBCC)

➜ Portable (POSIX, Windows using WSA)
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BSMP Socket API (simplified):

➜ bsmp_socket(family, style)

➜ bsmp_join(sock, if_addr, mc_addr)

➜ bsmp_leave(sock, if_addr)

➜ bsmp_connect(sock, if_addr, mc_addr)

➜ bsmp_send(sock, data),

➜ bsmp_recv(sock, data)

➜ bsmp_close(sock)
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DESIGN & IMPLEMENTATION

Overview:
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Code Structure:

➜ Data structures (object-oriented C)

• Timer queue

• Data rate estimator

• Socket address routines

• PDU

• Transmission group

• Send queue, receive queue

• Transmission group table

• Virtual socket layer

➜ Sender logic

➜ Receiver logic
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Timer queue:

➜ Core component, used for all timeouts

➜ Sender thread and receiver thread run in a loop, with an iteration at
least about every 10 msecs

➜ There may be many outstanding timeouts (each TG has a timeout)

➜ Once each iteration, there is a timer queue “clock-tick”

➜ Clock-ticks do not need to be uniformly spaced

➜ All timers that have already expired at the clock-tick are invoked and

removed from the queue

➜ Efficient implementation: timer start and remove are both O(log n)

(balanced binary tree)
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Virtual Socket Layer:

➜ Abstracts the operations needed on an underlying socket (normally

POSIX or WSA)

➜ Used to implement sockets that communicate via thread-safe queues
(in-process)

➜ Primarily for testing

Software and APIs used:

➜ GLib 2.0

➜ POSIX threads

➜ POSIX socket API (WSA on Windows)

➜ ISO C, written for POSIX APIs
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TOOLS

Sample sender and receiver:

➜ Simple, general-purpose BSMP sender/receiver

➜ Allows access to all protocol options

Test Torture:

➜ Test program

➜ Uses virtual socket layer

➜ Generates randomly-sized packets with random content

➜ Checks if they are correctly received

➜ Can be configured via an XML config file:

• Link properties (delay, loss rate)

• Protocol options (mode, data rate, . . . )
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THE END

Thanks for Your Attention!
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